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Abstract

White-box testing allows developers to determine whether or not a program is partially consistent with
its specified behavior and design through the examination of intermediate values of variables during
program execution.  These intermediate values are often recorded as an execution trace produced by
monitoring code inserted into the program.  After program execution, the values in an execution trace
are compared to values predicted by the specified behavior and design.  Inconsistencies between
predicted and actual values can lead to the discovery of errors in the specification and its
implementation.  This paper describes an approach to (1) verify the execution traces created by
monitoring statements during white-box testing using a model checker as a semantic tableau; (2)
organize multiple execution traces into distinct equivalence partitions based on requirements
specifications written  in linear temporal logic (LTL); and (3) use the counter-example generation
mechanisms found in most model-checker tools to generate new test cases for unpopulated equivalence
partitions.

1. Introduction

Software developers often use “models” to reason about the design of their systems, but keeping the models
and source code in fidelity during development is a difficult task [1].  Typically, a model provides an
abstraction for specifying, communicating, and understanding aspects of the expected behavior of a
software system.  Examples of models include finite state machines [2], functions [3], flow diagrams,
process algebras [4], petri nets, and many other formal and informal notations.  During development, the
code must not only implement behaviors as specified by a model, but a model itself may need to change
based on discovered limitations of the implementation environment [5].  Maintaining fidelity between the
code and models is important as the software evolves because any divergence may lead to future problems
including design errors, inconsistent documentation, and expensive rework.

While it is possible in some cases to generate code directly from a model, most designers must develop
software directly in a standard programming language.  To ensure that their code reflects their model,
developers frequently test their software during development and refine their designs and code based on the
results of these tests.  Such a process is similar to software prototyping but is done primarily to confirm the
viability of implementing a proposed design in a target environment.  The use of testing in such
circumstances establishes an informal relationship between the code and a design model.  Few explicit
software development methods, however, exist that support this process of refinement and co-evolution of
designs and their implementations.  As a result, the behaviors expressed by models and code often diverge
later in the development lifecycle because fidelity between them is difficult to maintain as changes are made
to either representation.
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White-box testing allows developers to establish some fidelity between models of their software designs and
their code during development.  The output traces of white-box tests, achieved via the use of a debugger or
embedded print statements, help to validate that the code behaves in accordance with a model of its design.
If an inconsistency between a trace and the specified behavior is discovered, then the model or the code can
be corrected as appropriate.  For example, Bentley describes the use of monitoring statements in the
implementation of a binary search program [6].  In one test case, the input and output of the program are
correct, but inconsistencies between the intermediate values of the upper and lower indexes in the execution
trace lead him to discover the error in the code.  This form of debugging is common and informal, but relies
on the existence of an external model of the program’s design to compare against the actual behavior.  A
test oracle (in this case Bentley himself) relies on an intuitive model of binary search to verify that the
program behaves correctly during execution.

Specification-based testing advocates have long promoted the use of formal models as a source for test
generation and test oracles [7, 8].  Our approach, called formal testing, is a specification-based testing
process that uses model checking techniques to verify, organize, and generate white-box tests during
evolutionary software development.  While a model can be analyzed directly using model checking methods
for safety, invariance, liveness, and other properties, it can also be used to manage and organize a test
environment.  We have developed a technique to verify execution traces during white-box testing using a
model-checker as a semantic tableau [9].  We also show how requirements stated as linear temporal logic
formulae can be used to organize execution traces into equivalence partitions [10] to determine the
adequacy of test coverage relative to a set of requirements.  Finally, the use of model checking allows for
automated generation of tests for unpopulated partitions.  This approach identifies inconsistencies between
the code and models and helps to leverage more powerful forms of analysis throughout the development
process.

2. Model Checking

A model checker takes a description of several concurrent, finite state machines as input and effectively
analyzes the expanded computation tree for given properties.  A computation tree is  a conceptual structure
that consists of a possibly infinite set of all possible execution paths.  For example, consider the concurrent
machines P1 and P2 which cycle through a sequence of states 1Æ2Æ3Æ1Æ…. When either process
reaches state 3, it will reset the state of both machines to state 1.  Figure 1 depicts the computation tree
consisting of all possible execution paths in the joint machine P1∪ P2 where each node is denoted by the
composite state of each subprocess.

The computation tree can be searched effectively to ensure that all paths obey specific constraints
expressed as liveness, invariance, and safety properties.  Model checkers employ various methods to reduce
the complexity of the search.  For example, redundant states can be eliminated from searches due to the
memory-less properties of finite state machines.  Redundant exploration of the subtree below the joint state
(2,2) in Figure 1 can be eliminated from consideration.  Other related optimization techniques include
partial order reduction [11] and the use of binary decision diagrams (BDDs) in symbolic model checkers
[12].

Through the effective expansion of the computation tree, the behavior of the model can be analyzed for
specific properties.  Such properties can be specified as linear temporal logic (LTL) formulae that describe
sets of paths (possibly empty) in the computation tree.  LTL formula employ many temporal operators [13]
including the always ([]), next (O), and eventually (<>) operators.  For example, the LTL formula [](p1=1)
describes the starvation of process 1.  Given this formula, a model checker would identify a single path in
the computation tree that corresponds to the rightmost, infinite path in Figure 1.  Such formulae can



3

describe non-trivial patterns for multiple paths that have different behaviors but satisfy a common property.
For instance, starvation of either process corresponds to the leftmost and rightmost paths in Figure 1.

3. Requirements as Temporal Formulae

A finite state model can specify a design solution for meeting a set of requirements.  Required behaviors of
the system can be expressed as temporal constraints on a design model.  A model checker can be used to
determine whether or not the model contains paths that satisfy a specific property.  There are three
categories of properties that correspond to set of paths in a model:

• no paths in the model should exhibit the property (i.e., a safety property)

• all paths in the model should exhibit the property (i.e., an invariance property)

• some paths in the model should exhibit the property (i.e., a liveness property)

For example, in the case of the machine P1∪ P2 shown in Figure 1, we can specify a requirement R1 such
that in some cases P1 or P2 must completely execute to state 3 before letting the other process execute (i.e.,
the execution of P1 and P2 is not interleaved).  This corresponds to a liveness property satisfied in the
model by some of the paths in the computation tree shown in Figure 1.  The complement of a property is
expressed by its negation.  The union of paths that satisfy a liveness property and its negation include all
paths in a model.

Safety requirements are those properties which none of the paths in a model satisfy.  To check a model for
the absence on all paths of specific behavior means that effectively all paths in the model have to be
explored.  This corresponds to our intuitive notion that in order to check for the absence of a property, then

Figure 1: infinite computation tree for concurrent finite-state machines P1 and P2
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exhaustive testing of all paths for a safety property is necessary but often infeasible.  An invariant property
is one that all paths in the model must satisfy.  An invariant property is the logical complement of a safety
property.  For example, we can require that the system must always eventually reach the state of (1,1) in
the computation tree in Figure 1.  This property must be true of all paths in a computation tree.  Like safety
properties, invariant properties require an effective search of all paths in the model to determine its
presence.

For our example, we can express some requirements as temporal formulae:

[]<>([1,3] V [3,1])  [R1]

[]<>([2,1])  [R2]

[]<>([3,2])  [R3]

The requirement R1 specifies that the execution of processes P1 and P2 must not be interleaved.  It states
that always eventually the joint state [1,3] or [3,1] must appear on the execution path.  This holds for any
path on which that state [1,3] or [3,1] is reachable from all the nodes on that path.  Its complement
property, ~R1, asserts that neither joint state [1,3] nor [3,1] is reachable.  Another property, R2, states that
process P1 must be the first process to execute some of the time.  Its complement property, ~R2, specifies
that process P2 must be the first process to execute some of the time.  A final property, R3, specifies that
process P1 must terminate last under interleaved execution and its complement ~R3 specifies that process
P2 must terminate last.

Each of these properties identify a set of infinite paths in the computation tree.  For validating, partitioning,
and generating test sequences, we need only consider finite prefixes of these paths that exhibit the desired
properties.  Otherwise, each finite path as shown in Figure 1 is a prefix of a path that exhibits all the
properties listed above.  Fortunately, the counter-example mechanism in most model checkers produce such
prefixes (including fixed cycles) so that we can reason about properties of finite test traces.

4. Testing based on Model Checking

We use the SPIN model checker [14] and its counter-example generation mechanism to validate test traces,
organize tests into equivalence partitions, and generate new tests for unpopulated partitions.  We assume
that a partial, finite-state model of the system exists and that system requirements can be stated as temporal
properties of the model.  A SPIN model is specified in the Promela language as a finite set of
asynchronous, concurrent processes that interact through shared variables and communication channels (a
special case of shared variable).

Given the Promela specification, the SPIN model checker explores the computation tree for the presence of
paths that exhibit a given property.  The property is specified as a special, synchronous process called a
never claim.  The never claim is implemented as a Bucchi automata that terminates when a property is
exhibited by a path in the computation tree.  If a never claim succeeded (i.e., the Bucchi automata
terminates or enters an accepting state), the SPIN model checker will produce a trace path as a counter-
example that exhibits the property in question and the user can resume the search for the next path or
terminate the search.
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4.1 Trace Validation

In this first use of model-based testing, we do not employ the Bucchi automata.  We use white-box testing
to create execution traces of a program’s behavior and use the SPIN model checker as a semantic tableau
to determine whether or not a trace corresponds to a path within the computation tree of a model.  First, the
program under test is instrumented with statements that produce an execution trace of the intermediate
values of important program variables.  This allows us to monitor the changes of state within the program
during and after execution to determine if program’s behavior concurs with the design specified by the
finite state model.  Next, we validate an execution trace by creating an additional trace process (PT) within
the model that contains the event sequence specified by the trace.  The process PT proceeds based on events
and variable values within other processes in the model.  A false assertion is appended to the end of the
trace to force the generation of a counter-example if the process PT terminates.  The process PT  can only
terminate for legal paths in the computation tree created by other processes in the model.  If PT terminates
and produces a counter-example, then the test trace concurs with the behavior specified by the model.

Failure to generate a counter-example means that the trace is not in the computation tree specified by the
finite-state model.  This does not imply, however, that the program is incorrect or the model is incorrect.
Inconsistencies may be due to the lack of sufficient instrumentation, incompleteness of the model or errors
in either the model or code or both.  Such inconsistencies, however, help to maintain a higher degree of
fidelity between the model and code.  They also serve to guide placement of instrumentation in the code.

Likewise, acceptance by the model (i.e., generation of a counter-example) is not definitive.  If a trace
contains only a subset of intermediate states then the model could recognize the trace in the model, but the
behavior may not account for all variable changes.  Consider the trace

[1,1]Æ[2,3]Æ[1,1]

that corresponds to a subset of the states in the computation tree in Figure 1.  While the trace is valid using
our approach, it accounts for only a subset of nodes along some paths in the computation tree.  To solve
this problem requires the introduction of a counter in the model to synchronize events in the model and the
traces, but such a counter exacerbates the state space explosion problem in the model checker.  This
requires that the program be instrumented at all points where the variables of interest are modified.  With
built-in “watchers” in most debuggers, this is usually not a problem.

4.2 Equivalence Partitioning

Test analysts use equivalence partitioning on the input space of a program to minimize the number of tests
needed to cover all expected behaviors of a software system under test [10].  Creating partitions, however,
is usually an informal and difficult task.  Traditionally, the input space is partitioned roughly into
overlapping subsets based on some categorization of the expected output behavior of the program under
test.  In white-box testing, the expected behavior includes the intermediate values of internal variables as
shown in the execution trace during the test.

Our approach involves partitioning paths in a computation tree based on combinations of requirements and
their logical complements.  We construct a partitioning based the conjunction of all requirements and their
complements as shown in Table 1.  This partitioning is called the conjunctive complementary closure
(CCC) of a set of requirements.  Each combination is called a coverage property because it describes a
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unique set of paths.  While the partitions created by a CCC are disjoint1, this only applies to complete paths
in the computation tree.  Path prefixes may fall into one or more partitions.

Since paths in a computation tree are usually infinite, we cannot enumerate paths in the CCC partitions of
most computation trees, but we can “sort” execution traces for specific tests into one or more partitions
using a model checker.  We can determine if a trace belongs to a partition by (1) adding the a trace process
PT to a model as we did for trace validation and (2) adding a synchronous, Bucchi automata that enters an
accepting state if a specific coverage property is satisfied.  Using a special feature of the SPIN model
checker, we can automatically generate Bucchi automata in Promela from linear temporal logic (LTL)
specifications.  We then append the generated Bucchi automata to the end of the model.  The Bucchi
automata must be in an accepting or terminal state and the trace process PT must terminate in order to
generate a counter-example.  Instead of terminating with a false assertion as in the case of trace validation,
the trace process sets the variable done  to the value 1.  If the trace process terminates and the Bucchi
automata terminates or is in an accepting state, then SPIN will generate a counter-example and the trace
belongs in the partition specified by the LTL formulae.

A test trace may fall into one or more partitions.  Indeed, test traces of sufficient length can fall into all
partitions of the CCC.  A test trace that falls into one and only one partition is called a minimal test trace.
For N coverage properties, a set of N minimal tests represents the minimum test suite needed to exercise the
program relative to the CCC.  Such minimal test traces can usually be generated and consist of the shortest
prefixes that exhibit a given coverage property.

Some coverage properties will not be found in a computation tree for a model.  For example,  the
requirements in partition number 1 are inconsistent because R1 requires non-interleaved behavior while R3
requires interleaved execution.  While this can be detected by inspection, the model checker will detect this
inconsistency automatically by (1) failing to populate that partition with any valid test traces and (2) failing
to generate valid test traces (see section 4.3 below).

A coverage property that corresponds to a non-empty partition is called a valid coverage property.  Invalid
coverage properties are the result of conflicts between requirements.  It is expected that no test traces

                                                  

1 The proof that CCC partitions are disjoint is by contradiction: assume that a path P satisfies at least two
coverage properties C1 and C2.  But C1 and C2 will differ on at least one requirement and its negation by
definition of the CCC set.  A path cannot satisfy a requirement and its negation.  Therefore, the assumption
is false and CCC partitions must describe disjoint sets of paths in the model.

Partition number Conjunctive complementary closure (CCC)
1 R1 R2 R3
2 R1 R2 ~R3
3 R1 ~R2 R3
4 R1 ~R2 ~R3
5 ~R1 R2 R3
6 ~R1 R2 ~R3
7 ~R1 ~R2 R3
8 ~R1 ~R2 ~R3

Table 1: Equivalence partitions on R1, R2, and R3
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should fall into such partitions.  Paths that fall into invalid partitions are interesting because they can be
used to identify errant behavior in the implementation and to generate tests that stress the implementation
for cases that should not occur.  So rather than eliminate such partitions from the model, we use them to
identify problems and generate stress tests.

4.3 Test Generation

Most model checkers include mechanisms for producing counter-examples if some paths in a computation
tree exhibit a given property.  The SPIN [14], Murphi [15], and SMV model checkers [16], for example,
will produce counter-examples when paths exist in the computation tree that violate assertions or satisfy
temporal formulae.  We can cause the SPIN model checker to generate counter-examples on demand for a
given coverage property.  As in partitioning, we use the Bucchi automata mechanism in SPIN to analyze
the behavior of the state model, but we do not use an additional trace process.  If a coverage property is
valid, the SPIN model checker produces a set of trail files that correspond to paths that exhibit the failed
behavior.

The SPIN model checker will produce finite prefixes or fixed cycles that exhibit a given property if it exists
in the computation tree.  These counter examples serve as test templates for constructing actual test input
sequences on an implementation.  Partitions that correspond to invalid coverage properties can be used to
detect inconsistencies in the requirements themselves and to generate off-nominal test cases that can be used
to stress test an implementation (i.e., such template traces can be used to try and force the implementation
into failure modes).

5. Scalability

As another example, consider a railroad crossing scenario consisting of 3 separate processes: a train, a
gate, and a car.  Two obvious properties of this system are that

1. The car and train should never cross at the same time

2. The car should eventually get to cross (i.e., the gate does not stay down indefinitely)

The first property is a safety condition while the second is a liveness condition.  We first construct a naïve
model consisting of the 3 processes and synchronization between changes in their states.  For example, the
gate would transition from the UP position to DOWN when the train is in state APPROACHING.

However, analysis of the naïve model using a model checker would quickly identify violations of both of
these properties.  In the first case, a race condition exists between the train and the gate, i.e., the train may
“beat” the gate by reaching the crossing before the gate is down thus allowing the car to cross while the
train is at the intersection.  In the second case, without a sense of fairness in the model checker, the car
could be caused to wait indefinitely on an infinite number of trains.

We claim that the presence of these paths in the computation tree of a naïve model of the railroad system
can be useful in several ways.  First, if a test trace is classified in one of the partitions corresponding to
such a property, it is clearly a failure case of the implementation. Second, we can generate test templates
for these errant partitions to stress test the implementation for such off-nominal behaviors.

We have applied this technique in an informal manner to a complex Internet protocol for reliable
multicasting [17].  Formal testing allowed us to keep the protocol state model in agreement with the code
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during the implementation phase of the protocol engine.  Due to implementation considerations caused by
memory limits, network performance and the changing needs of applications using the protocol, some
aspects of the protocol requirements had to be changed during implementation. Formal testing allowed us to
keep the model and code in synch with each other, organize our test cases, remove obsolete tests cases,
generate new test cases for unseen conditions, and perform analysis for invariant and safety properties on
the protocol throughout the entire development lifecycle.

6. Future Work

Future work includes exploration of the sources of conflicts between requirement formulae that lead to
invalid coverage properties.  Some of the conflicts may arise due to inconsistencies in the requirements
themselves.  We may be able to exploit conflicts to eliminate non-viable test partitions or reduce partitions
to partial combinations of requirements that interact in a non-trivial manner.  Exploration of the sources of
conflicts between requirements may also lead to the discovery of incomplete behaviors in the model.

We are also exploring the dynamics of software development processes that employ formal testing as a
means to evolve software and specifications simultaneously.  We believe that although the ideal situation is
to analyze a set of requirements fully before implementing them, the reality of software development is that
specifications and implementations must change during the entire lifecycle of a software system even after
deployment.  The changes to either specification or code must be synchronized with the other.

Furthermore, developers must be able to assess the impact of changes in either specifications or code on the
other.  For example, by using formal testing, we can assess the impact of a specification change in terms of
the percentage of existing tests that are invalidated (i.e., are no longer traces in a valid equivalence
partition) or reclassified (i.e., a member of different equivalence partition) due to the change.  Current test
management techniques are inadequate for determining the regression impact of specification changes on
test suites.

7. Summary

Testing remains a powerful and intuitive approach to ensuring the quality and reliability of software, but
testing also has serious limitations.  We believe that by managing testing via a formal methods we can reap
the benefits of formal analysis on a model that is kept in fidelity with the code.  The model can be analyzed
for invariant and safety properties that are difficult to test for completely.  The composition of both testing
and formal methods in this manner has great potential since both approaches complement the strengths and
weaknesses of the other method.
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